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Abstract

We contribute to the study of formal languages that can be recognized
by transformer encoders. We focus on two self-attention mechanisms: (1)
UHAT (Unique Hard Attention Transformers) and (2) AHAT (Average
Hard Attention Transformers). UHAT encoders are known to recognize
only languages inside the circuit complexity class AC?, i.e., accepted by a
family of poly-sized and depth-bounded boolean circuits with unbounded
fan-ins. On the other hand, AHAT encoders can recognize languages
outside ACO), but their expressive power still lies within the bigger circuit
complexity class TC, i.e., AC%circuits extended by majority gates. We
first show a negative result that there is an AC°-language that cannot
be recognized by an UHAT encoder. On the positive side, we show that
UHAT encoders can recognize a rich fragment of AC°-languages, namely,
all languages definable in first-order logic with arbitrary unary numerical
predicates. This logic, includes, for example, all regular languages from
AC°. We then show that AHAT encoders can recognize all languages of
our logic even when we enrich it with counting terms. We apply these
results to derive new results on the expressive power of UHAT and AHAT
up to permutation of letters (a.k.a. Parikh images).

1 Introduction

Transformers have revolutionized natural language processing by facilitating
the efficient and effective modeling of intricate contextual relationships within
text [19]. This remarkable capability has sparked numerous investigations into

the potential boundaries of transformers’ power [11, 22, [17, 211 12, 6] Bl [7]. One
natural method for addressing this question is to explore the classes of formal
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languages that these architectures can recognize. This approach provides an
insight into their strengths and limitations. The response to this question natu-
rally relies on the specific features allowed within transformer encoders. These
encompass the interplay between encoders and decoders, the kind of functions
used for positional encodings and attention mechanisms, and considerations of
fixed or unbounded precision, among other factors.

While the capacity of transformers that incorporate both encoders and de-
coders to recognize languages is well understood today (indeed, such archi-
tectures are Turing-complete and can thus recognize any computable language
[17]), the expressive power of transformer encoders has not been fully elucidated
to date. Unique Hard Attention Transformers (UHAT) are a class of transformer
encoders that has been a subject of many recent papers. As was shown by [12],
UHATS recognize only languages in AC’, i.e., recognized by families of Boolean
circuits of unbounded fan-in that have constant depth and polynomial size. In-
tuitively, this means that UHATS are rather weak at “counting” (more precisely,
reasoning about the number of occurrences of various letters in the input word).
For example, consider the following two languages: majority and parity. The
first one corresponds to the set of words over alphabet {a, b} for which the ma-
jority of positions are labeled by a, while the second checks if the number of
positions labeled @ is even. That these languages are not in AC® follows from
a groundbreaking result in circuit complexity theory [9] [1]). Hence, they are
neither accepted by UHATs. However, which fragment of the AC” languages
can actually be recognized by UHATS remains an unresolved question.

We start by showing that not all AC’ languages can be accepted by UHATS.
This is obtained by combining results from [I] and [I1]. Based on the previous
observation, we focus on identifying a rich fragment of AC® that can in fact be
embedded into the class of UHATSs. To achieve this, we use the characterization
of AC? as the class of languages expressible in FO(AIl), the extension of first-
order logic (FO) with all numerical predicates defined in relation to the linear
order of a word [13]. We show that UHATS recognize all languages definable in
FO(Mon), the restriction of FO(All) with unary numerical predicates only [4].
The logic FO(Mon) is highly expressive. Unlike FO, it can express non-regular
languages like {a™b™ | n > 0}. Remarkably, it contains all regular languages
within AC®, which includes examples like (aa)* — a language not definable in
FO. Additionally, our result subsumes the result of [22], where it is shown that
Dyck languages of bounded nested depth can be recognized by UHATSs. It is
not hard to see that these languages are regular and belong to AC’, hence they
are expressible in FO(Mon). Our result also implies that UHAT is expressively
more powerful than regular languages modulo letter-permutation (a.k.a. Parikh
images [16, [15]).

To establish the result that UHATSs recognize all languages definable in
FO(Mon), we take a slightly circuitous route: rather than directly formulat-
ing FO(Mon) sentences as UHATSs, we show that each formula in LTL(Mon),
the extension of linear temporal logic (LTL) [8] with arbitrary unary numerical
predicates, can be equivalently represented as an UHAT. The proof for FO(Mon)
then derives from Kamp’s seminal theorem [I4], which establishes the equiva-



lence between languages definable in FO and LTL. The advantage of dealing
with LTL, in contrast to FO, lies in the fact that all LTL formulas are unary in
nature, i.e., they are interpreted as sets of positions on a word, unlike FO formu-
las which possess arbitrary arity. This property aligns well with the expressive
capabilities of UHATS, facilitating a proof through structural induction.

While the fact that UHAT is in AC” implies limited counting abilities of such
encoders, recent work has shown that a slight extension of the hard attention
mechanism can help in recognizing languages outside AC° [12]. Instead of using
unique hard attention, this model uses average hard attention (AHAT), which
refers to the idea that the attention mechanism returns the uniform average
value among all positions that maximize the attention. To what extent does
AHAT enrich the counting ability of UHAT? In answering this question, we
introduce a logic named LTL(C, +), which is an extension of LTL(Mon) that
naturally incorporates counting features. We show that any language that can
be defined within LTL(C,+) can also be identified by an AHAT. The logic
LTL(C,+) can express interesting languages lying outside AC? including ma-
jority and parity (as far as we know, it have been shown before that parity
can be accepted by an AHAT). More generally, our result implies that AHAT's
are equipped with a powerful counting ability: all permutation-closed languages
over a binary alphabet and all permutation closures of regular languages (which
are in general not context-free) can be recognized by AHATS.

Related work. There has been very little research on identifying logical lan-
guages that can be accepted by transformers. The only example we are aware
of is the recent work by [7], in which a variant of first-order logic with counting
quantifiers is demonstrated to be embeddable into transformer encoders with
a soft attention mechanism. The primary distinction between their work and
our results is the choice of the attention mechanism. Additionally, the logic ex-
amined in their paper does not have access to the underlying word order being
considered. This implies that some simple languages, such as a*b*, which are
definable in FO, are not definable in their logic.

Proviso. Some of the proofs in the paper are rather technical and lengthy.
For such a reason we have relegated them to the appendix.

2 Background notions and results

2.1 Transformer encoders

We utilize a streamlined version of transformers, simplifying the model by
abstracting certain features employed in more real-world scenarios.

An encoder layer is a function that takes a sequence of vectors, vg, ..., v,_1,
in R? as input, where d > 0. It produces an output sequence of vectors,
Vi, ...y, Vi _1, in R with e > 0. We consider two types of encoder layers:



standard and ReLU. Standard encoder layers resemble those found in most for-
malizations of transformer encoders. For the first part of the paper we assume
that they employ a unique hard attention mechanism, meaning that a position
only attends to the element with the highest attention score (breaking ties arbi-
trarily). On the other hand, ReLU encoder layers simply apply a ReLU function
to the kth coordinate of each vector v;. ReLU layers serve as a practical method
for encoding logical formulas into transformers. A transformer encoder is then
a concatenation of encoder layers. We define all these notions below.

Standard encoder layer with unique hard attention. A standard en-
coder layer is defined by three affine transformations, 4, B: R? — R? and
C:R? 5 Re. For i€ {0,...,n— 1}, we set

a; < Vs

where j; € {0,...,n— 1} is the minimum element that maximizes the attention
score (Av;, Bvj) over j € {0,...,n — 1}. The a;s are often known as attention
vectors. After that, we set

v+ C(vy,a;), i=0,...,n—1.

It is useful to note that standard layers can do arbitrary position-wise affine
transformations.

ReLU encoder layer. A ReLU layer is given by k € {1,2,...,d}. Tt just ap-
plies the ReLLU function to the kth coordinate of each vector v;. That is, assum-

X 1 d 1 k-1 k1 o k41 d
ing that v; = (v},...,v{), then v « (v/,...,v; " ,max{0,v]},v;"", ..., v),
fori =0,...,n — 1. The ReLU function can express the max of two numbers:

max(z,y) = max(0,z—y)+y. This shows that with a constant number of ReLU
layers, we can implement position-wise any function which is a composition of
affine transformations and max.

Transformer encoder. A unique hard attention transformer encoder (UHAT
is defined simply as the repeated application of standard encoder layers with
unique hard attention and ReLU encoder layers (with independent parameters).

2.2 Languages accepted by transformer encoders

Next, we define how a transformer can be used to accept languages over a
finite alphabet. This requires extending transformer encoders with three fea-
tures: a function for representing alphabet symbols as vectors (which, for the
purposes of this paper, we represent as one-hot encodings), another function

1Some of the previous papers, for instance [12], allow to use in UHAT only rational numbers.
We find this too restrictive because functions such as cos and sin are widely used in practice.
Nevertheless, we stress that our results hold with this restriction, by taking good-enough
approximations by rational numbers.



that provides information about the absolute positions of these symbols within
the input word, and a vector that is used for checking whether the word should
be accepted or not. The function that provides information about positions
is often referred to as a positional encoding, and it is essential for recognizing
properties of ordered sequences of vectors. In fact, without positional encoding,
encoders treat input sequences as invariant to permutations [17].

Consider a finite alphabet 3 and let 7" be an UHAT that takes a sequence of
vectors over R? as input and converts it into a sequence of vectors over R¢. A
language L C X7 is accepted by T, if there is an embedding function f: ¥ — R9,
a positional encoding function p: N x N — R¢, and a vector t € R®, such that
for every w € L we have T'(w) > 0, and for every w € X\ L we have T'(w) < 0.
Here, T : ¥ — R is defined as follows. Let @ = ag . ..a,_1 € X", and suppose
the output of T" when given the input sequence f(ag) + p(0,n), ..., f(an—1) +
p(n — 1,n) is the sequence vo,...,vy,_1. Then we set T' (@) = (t, vo).

2.3 First order logic on words

We assume familiarity with first-order logic (FO). Let X be a finite alphabet.
A word @ = ag---an,_1 in U7 is represented as a structure Sy whose domain
is {0,...,n —1}. This structure includes a binary relation < that is interpreted
as the linear order on the domain, and for each symbol a € ¥, there is a unary
relation P, containing positions ¢ = 0,...,n — 1 where a; = a. Given an FO
sentence over words, that is, an FO formula without free variables, we denote
the language of all words w € 2T satisfying Sy E ¢ as L(¢). If an L C X7
satisfies L = L(¢), for some FO sentence ¢, then we say that L is definable in
FO.

Example 1. First-order logic (FO) enables us to define certain languages of
interest. Here, we present an illustrative example. Initially, we recognize that
we can employ FO to define a relation first(z) := —3y(y < x) that exclusively
holds true at the first position of a word. Correspondingly, we can define a
relation last(z) := —Jy(z < y) that holds solely at the last position of the word.
Moreover, it is possible to define a binary relation succ(z,y) =2 < yA—-Iz(zx <
z Az < y), which defines the successor relation within the domain. With these
expressions, we can show that FO is capable of defining the language (ab)™:

Ju (first(z) AP, (2)) A Jz (last(z) APy () AVaVy (succ(z, y) — (Pa(z) <> Py(y))).

That is, the first symbol of the word is an a, the last one is a b, every a is
followed by a b, and every b is preceded by an a. o

2.4 Unary numerical predicates

It is known that FO sentences can only define regular languages. In turn,
there are regular languages that are not definable in FO. An example is the
language (aa)*, which contains those words formed solely by the symbol a that
are of even length. However, there is a straightforward extension of FO that can



define this language: all we need to do is add unary predicate even(x), which
holds true at position ¢ in a word if and only if 7 is even. In fact, extending
FO with the predicate even(z) allows us to define the language (aa)* using the
following formula, which indicates that the last symbol in the word satisfies the
unary predicate even: YaP,(z) A Vy(last(y) — even(y)).

The extension of FO with unary numerical predicates can then be useful
for defining languages. We define a unary numerical predicate © as an infinite
family of functions

O : {0,...,n} — {0,1}, n > 0.

Given a word w in X7 of length n, for n > 0, we have that the predicate ©(z)
holds in position ¢ in @ if and only if ,,(i) = 1 (so far, we do not use the value
of 0, at n as positions are numbered from 0 to n — 1. We will use this value
in Section 4). Notice that under our definition, the truth of a unary numerical
predicate at position ¢ in the word w depends not only on ¢ but also on the length
of the word w. As we will explore further, this characteristic is advantageous for
defining interesting languages in FO extended with arbitrary unary numerical
predicates. Following the literature, we write FO(Mon) for such an extension
[4.

Example 2. Consider, for example, the non-regular language {a™b™ | n > 0}.
We show that it can be expressed in FO(Mon) with the help of a unary numerical
predicate O(z) such that 6,(i) = 1 iff n is even and ¢ = n/2 — 1. In fact, it
suffices to use the formula:

Fz (O(x) A Pa(z) A Vy(y <z — Pu(y)) A Vy(z <y — Py(y))).

This formula expresses that the middle point ¢ of w exists, is labeled as a, and
all positions smaller than ¢ are also labeled a, while all positions larger than 4
are labeled as b. This example illustrates the significance of unary numerical
predicates depending on both the position and the length of the word over which
the formula is evaluated. O

The definition of the language L(¢) C T defined by an FO(Mon) sentence
¢ is analogous to the one we provided for FO.

3 AC’ languages accepted by UHATS

3.1 Not all languages in AC® are accepted by UHATS.

[12] proved that languages accepted by UHATSs belong to the circuit com-
plexity class AC® | ie., the class of languages accepted by families of Boolean
circuits of unbounded fan-in, constant depth, and polynomial size. We combine
results by [I] and [I1] to show that the opposite is not the case, i.e., there are
AC® languages that are not accepted by UHATS.

As shown in [1], there is an AC’-family of circuits {C,, : {0, 1} — {0,1}}nen
such that for all n, the circuit C,, accepts all strings with at at least 2n/3 ones



and rejects all strings with at most n/3. Consider a language approzimate
magority, consisting of strings accepted by circuits from {C), }. This language is
in AC® by construction. However, as we state next, it cannot be recognized by
an UHAT. This result is proved by using a property of UHATS established in
[11].

Proposition 1. There is no UHAT that accepts the language approximate ma-
jority.

[20] shows that {C},} can be made polynomial-time computable, which im-
plies the existence of a polynomial-time computable language from AC’ that
cannot be accepted by an UHAT.

3.2 Main result: FO(Mon) languages are accepted by UHATS

Proposition [ tells us that not all AC® languages are accepted by UHATS.
In this section, we identify a significant subset of AC? languages that can be
accepted by UHATSs. To accomplish this, we rely on the characterization of the
class AC? as those languages that can be defined in FO extended with arbitrary
numerical predicates. Our main result establishes that as long as we restrict
ourselves to unary numerical predicates, translation into UHAT'S is possible.

Theorem 1. Let ¥ be a finite alphabet and ¢ an FO(Mon) sentence over words
from the alphabet . There is an UHAT that accepts L(¢).

Proving this result by induction on FO(Mon) formulas, which would be the
most natural approach to tackle the problem, turns out to be difficult. The
challenge arises because the FO(Mon) formulas obtained by induction can have
arbitrary arity, and transformer encoders do not seem capable of handling the
requirements imposed by such formulas. To address this issue, we take a different
approach. We employ Kamp’s Theorem, which establishes that the languages
definable in FO are precisely those that are definable in linear temporal logic
(LTL) [14].

3.3 Using LTL(Mon) to prove our main result

We first explain how LTL is defined, as this is crucial to understanding the
remainder of the paper. Let X be a finite alphabet. LTL formulas over ¥ are
defined as follows: if a € X, then a is an LTL formula. Additionally, LTL
formulas are closed under Boolean combinations. Finally, if ¢ and ¢ are LTL
formulas, then X¢ and ¢Uv are also LTL formulas. Here, X is referred to as
the next operator, and U as the until operator.

LTL formulas are unary, i.e., they are evaluated over positions within a word.
Let @ = ag-+-a,_1 be a word in ¥, and let i = 0,...,n — 1. We define the
satisfaction of an LTL formula ¢ over w at position i, written as (w,i) = ¢,
inductively as follows (omitting Boolean combinations):

e (w,i) E aif and only if a = a;, for a € X.



o (w,i) = X¢ if and only if i < n—1 and (w,i+ 1) |= ¢. In other words, ¢
holds in the next position after ¢ (if such a position exists).

o (w,i) E ¢U if and only if there exists a position j = 4,...,n — 1 for
which (@,7) | ¢ and such that (w,k) = ¢ for every k with ¢ < k < j.
That is, ¢ holds starting from position ¢ until the first position where 1)
holds (and a position where ¢ holds must exist).

We can extend LTL with unary numerical predicates in the same way we did
it for FO. Formally, we define LTL(Mon) as the extension of LTL with every
formula of the form ©, for © a unary numerical predicate. We write (w,i) = ©
to denote that 0,,(i) = 1, where n is the length of @w. If ¢ is an LTL(Mon)
formula over ¥, we write L(¢) for the set of words w € X1 with (w0, 0) = ¢.

Kamp’s Theorem establishes that for every FO sentence ¢ there exists an
LTL formula ¢ such that L(¢) = L(v), and vice-versa. It is straightforward to
see that this property extends to the logics FO(Mon) and LTL(Mon).

Proposition 2. [Tj|] For every FO(Mon) sentence ¢ there exists an LTL(Mon)
formula 1 such that L(¢) = L(v)), and vice-versa.

Our proof of Theorem [ is then derived directly from Proposition 2l and the
following result.

Proposition 3. Let ¥ be a finite alphabet and ¢ an LTL(Mon) formula defined
over words from the alphabet ¥2. There is an UHAT T that accepts L(o).

Before proving this result, we make the following important remark regard-
ing the positional encoding p used by T to accept L(¢). On a pair (i,n) € NxN
with i < n, we have that p(i,n) is composed of elements i, 1/¢i+1), (—1)%,
cos (7(1=279/10), sin (*(1-27)/10), and 6, (i), for every unary numerical predi-
cate © mentioned in ¢.

Proof of Proposition[3. Let ¢ be a formula of LTL(Mon). We say that a UHAT
realizes ¢ position-wise if, given a word W = ap...a,—1 € LT, the UHAT
outputs a sequence:

H{(’J),O) ': (b}v H{(’J), 1) ': (b}v R H{(’J),n - 1) ': ¢}7

that is, a binary word indicating for which positions ¢ is true on w and for
which is false. We show by structural induction that every LTL(Mon) formula
is realizable position-wise by some UHAT.

Let us consider first the base cases. If ¢ = a, for some a € ¥, our goal is to
obtain a sequence:

Hao =a}, {as =a}, ... , Han—1 = a}.

This can easily be achieved by using a one-hot encoding as the embedding
function. In turn, if ¢ = O, for © a unary numerical predicate, then ¢ can
be realized position-wise using the corresponding positional encoding p(i,n) =

0, ().



We continue with Boolean combinations. They can be implemented with a
composition of ReLU layers and point-wise affine transformation: -z =1 — z
and 2V y — max{2z—1,2y—1}+1

Yy = 2 .

For the cases when our formula is of the form X¢ or ¢U, we need the

following lemma.

Lemma 1. There is an UHAT that transforms each xo,...,x,—1 € {0,1} as
follows:
TOy vy, Tp_92,Tp_1+> Tgy--.,Tn_29,0.

Let us assume now that our formula is of the form X¢. It is enough to design
a unique hard attention layer in which attention is always maximized at the
next position. More precisely, we construct an UHAT that outputs a sequence
of vectors vq,...,v, € R3, and a linear transformation A: R? — R3, such that
argmaxjen(Av;,v;) = {i+1},for i = 0,...,n—2. This will allow us to “send”
{(w,i+1) E ¢} ={(w,i) = X} to the ith position, for i =0,...,n —2. It
only remains then to apply Lemma [I] to obtain 0 = I{(w,n — 1) = X¢} at the
last position.

Using our positional encoding and an affine position-wise transformation, we
can obtain:

v; = (cos (”(1;702)) , sin (”(1;702)> (~1)i- 10).

Let A be a linear transformation that reverses the third coordinate. Observe
that: ; ;
(Av;,v;) = cos (Wlioz)) + (=1)"*t 0.

We claim that, for a fixed ¢, this quantity is maximized at j = ¢ + 1. First,
those js that have the same parity as ¢ (in particular, j = i) cannot achieve the
maximum because the second term is —10. For js with a different parity, we
have (Av;, v;) = cos (7(27'=277)/10) + 10. Since all angles are in [—7/10, 7/10],
this quantity is maximized when |27* — 277| is minimized. For j < 4, the last
quantity is at least 27¢, and for j > 4, the minimum of this quantity is 27971,
achieved at j =17+ 1.

Let us finally assume that our formula is of the form ¢U. For a given
i=0,...,n—1, let j; be the minimal 5 € {i,...,n — 1} such that (w, j) ¥ ¢,
and if no such j exists, j; = n — 1. Observe that (w,7) E ¢U4 if and only if
(w, j;) = 1. To show the lemma, it is enough to create a unique hard attention
layer, where for every position ¢ the attention is maximized at j;.

Due to the Lemmal[ll we may assume, without loss of generality, that (@, n—
1) & ¢. Then for every i, there exists at least one j € {i,...,n — 1} such that
(w,j) & ¢, and then j; can be defined as the minimal such j, without any
clauses.

Using our positional encoding and the induction hypothesis, we can obtain
a sequence of vectors vi,...,Vv, € R* such that:

v; = (cos (”(1;702_))  gin (”(11702_)> 1, Hw,i qs}).



Consider a linear transformation B: R* — R* such that

By = (‘cos (L 502”)) sin (L ;02’1')) L -10-T{w,i £ 6}, 0).

Observe that

(vi, Bv;) = cos (”(2_17;2_”) ~ 10 @, = 6}.

We claim that this expression is maximized at j = j;. First, because of the last
term in it, it cannot be maximized at j with (@,j) = ¢. It remains to show
that among the js with (w, j) £ ¢, this quantity is minimized on the minimal

w271 —279) )
10 :

All the angles in question are in [—7/10, 7/10], so the cosine is maximized when
|27 — 27J| is minimized. Now, this absolute value is at least 27¢ when j < 1.
In turn, this absolute value is smaller than 27% for j > i, and it is the smaller
the smaller is j, as required. O

J which is at least i. In fact, in this case we have (v;, Bv;) = cos (

3.4 Applications of our main result

We show two applications of our main result. First, UHATSs accept all regular
languages in AC®. Second, UHATS are strictly more expressive than regular
and context-free languages in terms of the acceptance of languages up to letter-
permutation.

Regular languages in AC’. There is an important fragment of FO(Mon)
which is interesting in its own right. This is the logic FO(Mod), i.e., the exten-
sion of FO with unary numerical predicates of the form Mod;, for p > 1 and
0 <r <p—1. We have that Mod, (i) = 1 if and only if i = r (mod p). In fact, by
using a characterization given in [3], one can show that the languages definable
in FO(Mod) are precisely the regular languages within AC®. Then:

Corollary 1. Let L C X7 be a regular language in AC°. There is an UHAT
that accepts L.

Recognizing regular languages up to letter-permutation. Although not
all regular languages are accepted by UHATS (e.g. parity), we can use Theorem
[@Mto show that, up to letter-permutation, UHAT is in fact strictly more powerful
than regular and context-free languages.

To formalize our result, we recall the notion of semilinear sets and the Parikh
image of a language. A linear set S is a subset of N? (for some positive integer
d, called dimension) of the form

VO+ZViN = {V0+Zkivi cki, ..k EN}
=1 =1

10



for some vectors vo, ..., v, € N*. A semilinear set S over N is a finite union
of linear sets over N?. Semilinear sets have a very tight connection to formal
languages through the notion of the Parikh image a language L [16], which in-
tuitively corresponds to the set of “letter-counts” of L. More precisely, consider
the alphabet ¥ = {a1,...,a4} and a language L over X. For a word w € X, let
|w|q, denotes the number of occurrences of a; in w. The Parikh image P(L) of
L is defined to be the set of tuples v = (Jwla,, ..., |w|s,) € N? for some word
w € L. For example, if L = {a™b" : n > 0} and L' = (ab)*, then P(L) = P(L)).
In this case, we say that L and L’ are Parikh-equivalent. Note that L’ is regular,
while L is context-free but not regular. This is not a coincidence based on the
celebrated Parikh’s Theorem (cf. [16], also see [15]).

Proposition 4 ([16]). The Parikh images of both regular and context-free lan-
guages coincide with semilinear sets.

In other words, although context-free languages are strict superset of regular
languages, they are in fact equally powerful up to letter-permutation. What
about UHATSs? We have that they are strictly more powerful than regular and
context-free languages up to letter-permutation.

Proposition 5. Fach regular language has a Parikh-equivalent language ac-
cepted by an UHAT. In turn, there is an UHAT language with no Parikh-
equivalent regular language.

4 Languages beyond AC'

Transformer encoders with unique hard attention can only recognize lan-
guages in AC’, but a slight extension of the attention mechanism allows to
recognize languages lying outside such a class [I2]. In this section, we show
that in fact such an extended model can recognize all languages definable in a
powerful logic that extends LTL with counting features. This logic can express
interesting languages outside ACY, such as majority and parity.

4.1 Average hard attention

For the results in this section, we consider an extended version of transformer
encoders that utilize an average hard attention mechanism [17, [12]. Following
the literature, we call these AHAT. The difference between UHAT and AHAT
only lies at the level of the standard encoder layers, which are now defined as
follows.

Standard encoder layer with average hard attention. As before, these
layers are defined by three affine transformations, 4, B: R* — R% and C': R?? —
Re. For every i € {0,...,n — 1}, we define S; as the set of positions j €
{0,...,n — 1} that maximize (Av;, Bv;). We then set

a; +— ( Z vj)/|5’i|.

JES:
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After that, we set v} < C(v;,a;), for each ¢ = 0,...,n — 1. That is, attention
scores under average hard attention return the uniform average value among all
positions that maximize attention.

We also use future positional masking that allows us to take into account only
positions up to ¢. If the future positional masking is used, the sets .S; are defined
as sets of positions j € {0,1,...,i} that maximize (Av;, Bv,). Positional masks
have been employed on several occasions in theoretical papers [22] [5, 12] as well
as in practice, for example, for training GPT-2 [18].

4.2 LTL extended with counting terms

We present here LTL(C, +), an extension of LTL(Mon) that allows us to
define counting properties over words in a simple manner. This requires the
introduction of counting terms as defined next.

— —
Counting terms. Suppose ¢ is a unary formula. Then #¢ and #¢ are count-
ing terms. The interpretation of these terms in position ¢ of a word w of length
n is defined as follows:

(w,i) = {7 €{0,....i} [ (w,j) = o},
( 7i) = |{]€{’L,,n—1}|(’@,j)|:(b}|

%
That is, #¢(w,4) is the number of positions to the left of ¢ (including ¢) that

satisfy ¢, while #¢(w, ) is the number of positions to the right of ¢ (including
i) that satisfy ¢. Notice that, for words of length n, counting terms take values
in {0,1,...,n}.

pa)
g

g

Counting formulas. With counting terms and unary numerical predicates
we can create new formulas in the following way. Let ¢ be a unary formula and
© a unary numerical predicate. We define new formulas O(#¢) and 6(7@?5)
The interpretation of such formulas on position ¢ of a word w of length n is as
follows:

(@,1) = O#9) & 0,(Fo(w,1)) =1 (,i) = OHS) < Ou(F#(w,1)) = 1.

That is, the number of positions to the left (resp., right) of ¢ (including 4) that
satisfy ¢ satisfies the predicate ©. As counting terms can take value n, the value
of #,, on n becomes useful.

We also incorporate into our logic the possibility of checking linear in-
equalities with integer coefficients over counting terms. More specifically, for
any finite set of unary formulas ¢1,..., ¢k, ¥1,...,Yk, and for any coefficients
C1y...,Ckyd1,...,dr € Z we can create a formula:

! !
> i #e; + Zdj'#—df; > 0,
j=1

j=1

12



which is interpreted as follows:

The logic LTL(C,+). We denote by LTL(C, +) the logic that is recursively
defined as follows:

e Every formula LTL(Mon) is also an LTL(C, +) formula.
e Boolean combinations of LTL(C, +) formulas are LTL(C, +) formulas.
If ¢ and ¢ are LTL(C, +) formulas, then so are X¢ and ¢U.

If (;(5_18 an LTL(E> +) formula and © is a unary numerical predicate, then
O(#¢) and O(#¢) are LTL(C, +) formulas.

If ¢1,..., ¢k, 1, ..,k are formulas of LTL(C, +), then 327 ¢; - #¢; +
—
25:1 d; - #¢; > 0, is a formula of LTL(C, +).

4.3 LTL(C) definable languages are accepted by encoders

Next, we state the main result of this section: languages definable by LTL(C, +)
formulas are accepted by transformer encoders with average hard attention.

Theorem 2. Let ¥ be a finite alphabet and ¢ an LTL(C,+) formula defined
over words from the alphabet X2. There is an AHAT T that accepts L(¢).

As a corollary to Theorem 2] we show that AHATSs are rather powerful
in counting. To make this claim more formal, we study permutation-closed
languages, i.e., languages L such that v € L iff any letter-permutation of v is in
L. For a language L, we write perm(L) to be the permutation-closure of L, i.e.,
perm(L) = {w : P(w) = P(v), for some v € L}. Observe that perm((abc)*)
consists of all strings with the same number of occurrences of a, b, and ¢; this
is not even context-free. Owing to Parikh’s Theorem, to recognize perm(L),
where L is a regular language, an ability to perform letter-counting and linear
arithmetic reasoning (i.e. semilinear set reasoning) is necessary. AHATS possess
such an ability, as shown by the following corollary.

Corollary 2. The permutation closure perm(L) of any reqular language L is
accepted by an AHAT. Moreover, any permutation-closed language over a binary
alphabet is accepted by an AHAT.

Both majority and parity are permutation-closed and are over a binary al-
phabet. Hence, by the previous result, they are both accepted by AHATS.
While for majority this was known [12], the result for parity is new.

13



5 Conclusions and future work

We have conducted an investigation of the problem of which languages can
be accepted by transformer encoders with hard attention. For UHATS, we have
demonstrated that while they cannot accept all languages in AC’, they can still
accept all languages in a 'monadic’ version of it defined by the logic FO(Mon).
Crucial to the proof of this result is the equivalence between FO and LTL, as
provided by Kamp’s Theorem. In turn, we have shown that AHATS are capable
of expressing any language definable in a powerful counting logic, LTL(C, +),
that can express properties beyond AC®. This implies, among other things, that
the parity language can be accepted by an AHAT.

Several interesting problems remain open in our work, especially regarding
characterizations of the classes we have studied. To begin, are there languages
accepted by UHATSs that cannot be defined in FO(Mon)? Additionally, does
there exist a language in the circuit complexity class TCY, the extension of AC’
with majority gates, that cannot be recognized by AHATSs? Lastly, is there a
language that can be accepted by an AHAT but cannot be defined in LTL(C, +)?
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Appendix

Proof of Proposition . As Hahn showed, for every € > 0 and L > 0 there exists
¢ > 0 such that, for all larger enough n, if we consider as inputs binary strings
of length n, for every UHAT T consisting of L layers, there exists a fixation of
en input bits such that, under this fixation, the output of T" is determined by ¢
unfixed bits [I1]. However, it cannot hold for an UHAT recognizing approzimate
magority, for example, when ¢ = 1/10. Regardless of how we fix n/10 + ¢ input
bits, if we fix the remaining bits to Os, the circuit C), rejects our string, and if
we fix them to 1s, it accepts our string, even though the output of the UHAT
remains unchanged. O

Proof of Lemmalll At position i = 0,...,n — 1, this transformation can be
written as follows:

x; — x; —max{0,z; +i— (n+1)}.

It can easily be done with ReLU layer, using a positional encoding p(i, n) = i—n.
However, it can also be done with a positional encoding that does not depend
on n, for example p(i) = (¢,1/(i+1)). We just have to “transmit” n—1 to every
position in the UHAT. For that, it is enough to have a unique hard attention
layer, where attention in every position is maximized at j = n— 1 (which allows
that to “send” n to every position). For instance, consider v; = 1/(i + 1),
A(xz) = —x, and observe that:

1
arg max (Av;,v;,)=arg max ——-———={n-1
gjzo,...,n—1< i) gjzo,...,n—l (i+1)(+1) { }
for every i =0,...,n — 1. This finishes the proof of the lemma. O

Proof of Proposition[d. Upper bound: We first show that every regular lan-
guage over ¥ = {ay,...,aq} has a Parikh-equivalent language in UHAT. By
Parikh’s Theorem, the Parikh image of this given regular language is repre-
sented by a semilinear set S in dimension d. Our proof employs Theorem
[ Since FO(Mon) is closed under disjunction, it suffices to consider only lin-
ear sets S. Thus, take an arbitrary linear set S = v + 2221 v;N, where v;
(i > 0) is a non-zero vector. We will give a language L over the alphabet of
¥ ={a1,...,aq} definable in FO(Mon) (thus UHAT-recognizable, by Theorem
) such that P(L) = S. We will use the linear set S = (1,1,0) + (2,0,1)N as a
running example. ‘

For i =0,...,r and j = 1,...,d, define v] to be the natural number cor-
4 i
a; repeated v! times, while ¢; denotes the “length abstraction” of v;, i.e.,
4 = Z;l:l Uf Finally, let w; be the concatenation of w},...,w¢. Using our
example of S = (1,1,0) 4 (2,0, 1)N, then we have wy = ajas and w; = aja;as.
We also have ¢ = 2 and ¢; = 3.

responding to the jth argument of v;. Define wf to be the string a.’, i.e.,
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Next we define the language L as follows:

*

— *
L:=wy wi]- - w;

Using our running example, L would be ajas(aiaias)*. It is easy to see that
P(L)=S.

To show that this language is in FO(Mon)-definable, we demonstrate that
it is regular and belongs to AC’. It is regular because it is defined through
concatenation and Kleene star. Since AC” is closed under concatenation? it
remains to show that languages of the form w*, where w is a word, are in AC°.
We only have to care about input lengths that are multiples of |w]|, for other
input lengths the language is empty. Then we split the input into blocks of |w|
letters. We just need an AC’-circuit, checking that every block coincides with
w. For example, this can be done with an AND over blocks of constant-size
circuits, checking equality to w.

Lower bound: An example of a language that is in FO(Mon) (and so in UHAT)
whose Parikh image is not semilinear (and therefore, no Parikh-equivalent reg-
ular language) is

L = {a" : k is a prime number}.

Note that ¥ = {a}. This can be easily defined in FO(Mon) using the unary
predicate © := {k € N: k4 1 is a prime number} as follows: 320 (z) A -y >
x. (|

Proof of Theorem[2 As before, we are proving that every formula ¢ of LTL(C, +)
can be computed position-wise by some AHAT encoder, via structural induc-
tion. We have already shown how to do induction for all operators of LTL(Mon).
In our proof, attention was always maximized at the unique j, and in this case,
there is no difference between unique and average hard attention.

It remains to show the same for operators that are in LTL(C, +) but not in
LTL(Mon). First, we show that given a formula ¢, computed position-wise by

%
some AHAT, there is also an AHAT that computes #¢ and #¢ position-wise.
Using future positional masking and equal weights, we can compute at po-
sition ¢ the quantity:

Gw,0) ot (i) Fh(w,i)
T i+1 41

. i=0,1,....n—1.

Next, we have to compute
(_

( ¢(w7 Z) - ¢(w7 Z))
i+1 '

Zi =

This can be achieved as follows:

) 1

2if we have ACP-circuits C1,C5 for languages L1, Lo, we can construct an ACO-circuit C
for their concatenation as follows: C(z1...2n) =V,_;  ,(C(z1...2:) ANC(Zig1...2n)).

i = Yi —
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As our positional encoding includes 1/(i+ 1), this computation is a composition
of ReLU and affine transformations.

Our next goal is to get rid of the coefficient 1/(i + 1). For that, we create a
layer with the following attention function:

j2

i+1’

<AV¢,BV]‘> = 2] 2 —

Such attention function is possible because (I)) is a bilinear form of v; and v;.
Indeed, v; contains 1/(i+1) and v, contains 4, 2 due to our positional encoding,

. .
and also v; contains z; = M

i1
%
Denoting d; = #¢(w, i) — ¢(w, 1), we get that () is equal to
d; 2 (di— )+
<AVi,BVj>:2j', —,j = ( j) * Z.
t+1  i+1 1+1

H
Observe that d; = #¢(w,i) — ¢(w, i) takes values in {0,...,n — 1}. Hence,
for a fixed 4, the quantity () is uniquely maximized at j = d;. In this way, we
. —
get j = d; to position i. Adding ¢(w, i) to d;, we get #p(w, ). To get #o(w, 1)
to position ¢, we observe that:

F(w, 1) = ($(w,0) + ... + d(w,n — 1)) = ($(w,0) + ... + d(w,i — 1))
= <#—qS(w,n— 1) —d,.

This is computable at position i because #<—¢(w,n — 1) can be “sent” to all
positions via the attention function, always maximized at the last position (see
the proof of Lemma [I).

Our next goal is: given a formula ¢, computable position-wise by some
AHAT, and a unary numerical predicate ©, provide an AHAT that computes

O(#¢) and O(#¢) position-wise. As we have already shown, we can assume

—— —
that we already have counting terms #¢ and #¢ computed position-wise. Next,
we create a layer with the following attention function:

(Avi, Bvj) = 2j - #6(w, 1) — j* = = (j — #6(w,1))* + #(w, ).
Again, this is possible because this expression is a bilinear form of v; and vy,
—
due to our positional encoding. It is maximized at j; = min{n — 1, #¢(w,i)}
(when the counting term is equal to n, since we do not have a position indexed

by n, the maximizing position will be j; = n — 1). Having © included in the
positional encoding, we can get j; and 6,,(j;) to the ith position. Observe that:

0, (Fd(w, 1)) = {HD(w,7) <1 — 1} A0 (G)) V (~H{FS(w, i) < n— 1} Ay (n))

Since in our positional encoding, 8, (n) is included in every position, and since
position-wise Boolean gerations can be done by an AHAT, it remains to com-
pute the indicator I{#¢(w,i) < n — 1}. Transmitting n once again to every
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position, we can write:

]I{#qu(w, i) <n—1} =min{l,n — #—¢>(w, i)}.

This quantity can be computed by a composition of ReLU and affine trans-
formations. We can get 6, (#¢(w, 7)) to the ith position analogously.

Finally, we have to check that linear inequalities over counting terms can be
done in AHAT. Given formulas ¢1, ..., ¢, %1, ..., Y, already computed position-
wise by some AHAT, we have to provide an AHAT that computes the formula
Zf 165 - #(;5] + ZJ 1 d; #—1/1]> > 0 position-wise. After computing counting
terms for ¢1,..., ¢k, Y1, ..., Yk, we first can compute their linear combination,
using affine position-wise transformations:

HMa—

k
¢J w, i) + Zdj w] ).
j=1

Since coeflicients are integral, I; is integral as well, so we get:
I{l; > 0} = max{min{0,7;} +1,0}.

The last expression can be computed via composition of ReLLU and affine trans-

formations.
O

Proof of Corollary[d We show that permutation-closed languages over binary
alphabets and languages of the form perm(L), where L is a regular language,
are expressible in LTL(C, +).

First, assume that L is a permutation-closed language over a binary alphabet
{a,b}. Then whether or not a word @ belongs to L is determined by the length
of w and the number of a’s in w. In other words, there a numerical predicate
O such that for every n and for every w € {a,b}", we have w € L if and only
if 0,,(|@w|a) = 1 (recall that for a word @ and for a letter a, the expression |@|,
denotes the number of occurrences of a in w). Thus, L is expressible by the

formula @(%).
We now show that every language of the form perm(L), where L is regular,
is expressible in LTL(C, +).
As shown in [16], if L is a regular language over the alphabet ¥ = {aq,...,a4},
then
perm(L) = {w : P(w) € S},

for some semilinear set S of dimension d. Semilinear sets correspond precisely
to sets of tuples that are definable in Presburger Arithmetic (e.g. see [10]). See
standard textbook in mathematical logic for more details on Presburger Arith-
metic (e.g. see [2]). Since Presburger Arithmetic admits quantifier-elimination,
we may assume that S is a boolean combination of (a) inequalities of linear
combination of counting terms, and (b) modulo arithmetic on counting terms
(i.e. an expression of the form |w|,, = k (mod ¢), for some concrete natural
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numbers 0 < k < ¢ and ¢ > 0). For (b), one simply handles this using the for-

—
mula O(#a;), where O is a unary numerical predicate consisting of all numbers
n such that n = k (mod ¢). For (a), take a linear inequality of the form

d

¢(|w|ala LR |w|ad) = Zci|w

i=1

a; 207

where c¢i1,...,¢q € Z. Such a formula ¢ is already an atom permitted in
LTL(C,+). Since LTL(C,+) is closed under boolean combination, it follows
that perm(L) is also in LTL(C, +) and therefore, by Theorem[2] is in AHAT. O
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